Environmental Protection Agency

the mean candidate method measurements (\tilde{C}_j) against the mean reference method measurements (\bar{R}_j) , using equations 19 and 20 of this section, respectively:

Equation 19

$$Slope = \frac{\sum_{j=1}^{J} (\overline{R}_{j} - \overline{R})(\overline{C}_{j} - \overline{C})}{\sum_{j=1}^{J} (\overline{R}_{j} - \overline{R})^{2}}$$

Equation 20

Intercept =
$$\bar{C}$$
 - slope $\times \bar{R}$

- (4) To pass this test, at each test site:
- (i) The slope (calculated to at least 2 decimal places) must be in the interval specified for regression slope in table C-4 of this subpart; and
- (ii) The intercept (calculated to at least 2 decimal places) must be in the interval specified for regression intercept in table C-4 of this subpart.
- (iii) The slope and intercept limits are illustrated in figures C-2 and C-3 of this subpart.
- (h) Tests for comparison correlation. (1) For each test site, calculate the (Pearson) correlation coefficient, r (not the

coefficient of determination, r^2), using equation 21 of this section:

Equation 21

$$r = \frac{\displaystyle\sum_{j=1}^{J} \left(\overline{R}_{j} - \overline{R}\right) \! \left(\overline{C}_{j} - \overline{C}\right)}{\sqrt{\displaystyle\sum_{j=1}^{J} \! \left(\overline{R}_{j} - \overline{R}\right)^{2} \! \sum_{j=1}^{J} \! \left(\overline{C}_{j} - \overline{C}\right)^{2}}}$$

(2) For each test site, calculate the concentration coefficient of variation, CCV, using equation 22 of this section:

Equation 22

$$CCV = \frac{1}{\overline{R}} \sqrt{\frac{\sum_{j=1}^{J} (\overline{R}_{j} - \overline{R})^{2}}{J - 1}}$$

(3) To pass the test, the correlation coefficient, r, for each test site must not be less than the values, for various values of CCV, specified for correlation table C-4 of this subpart. These limits are illustrated in figure C-4 of this subpart.

[71 FR 61278, Oct. 17, 2006, as amended at 72 FR 32202, June 12, 2007]

TABLE C-1 TO SUBPART C OF PART 53—TEST CONCENTRATION RANGES, NUMBER OF MEASUREMENTS REQUIRED, AND MAXIMUM DISCREPANCY SPECIFICATIONS

		Simult	Maximum				
Pollutant	Concentration range, parts	1-hour		24-hour		discrepancy specification,	
	per million (ppm)	First set	Second set	First set	Second set	parts per mil- lion	
Ozone	Low 0.06 to 0.10	5	6			0.02	
	Med. 0.15 to 0.25	5	6			0.03	
	High 0.35 to 0.46	4	6			0.04	
	Total	14	18				
Carbon monoxide	Low 7 to 11	5	6			1.5	
	Med. 20 to 30	5	6			2.0	
	High 25 to 45	4	6			3.0	
	Total	14	18				
Sulfur dioxide	Low 0.02 to 0.05	5	6	3	3	0.02	
	Med. 0.10 to 0.15	5	6	2	3	0.03	
	High 0.30 to 0.50	4	6	2	2	0.04	
	Total	14	18	7	8		
Nitrogen dioxide	Low 0.02 to 0.08			3	3	0.02	

Pt. 53, Subpt. C, Table C-2

	Concentration range, parts per million (ppm)	Simultaneous measurements required				Maximum
Pollutant		1-hour		24-hour		discrepancy specification,
		First set	Second set	First set	Second set	parts per mil- lion
	Med. 0.10 to 0.20 High 0.25			2 2	2 2	0.02 0.03
	Total			7	8	

[75 FR 35601, June 22, 2010]

TABLE C-2 TO SUBPART C OF PART 53— SEQUENCE OF TEST MEASUREMENTS

Measurement	Concentration range			
Weasurement	First set	Second set		
1	Low High Medium High Low Medium Low Medium High Medium High Medium High Medium High Medium High Low Medium Medium Low Medium Medium Low Medium Medium Low Medium	Medium. High. Low. High. Medium. Low. High. Low. High. Medium. High. Medium. High. Medium. High. Medium. High. Low. Medium. High. Low. Medium. High. Low. High.		

Table C–3 to Subpart C of Part 53— Test Specifications for Pb in TSP and Pb in PM $_{10}$ Methods

Table C-3 to Subpart C of Part 53—Test Specifications for Pb in TSP and Pb in PM $_{10}$ Methods

Concentration range equivalent to percentage of NAAQS in μg/m³.	30% to 250%
Minimum number of 24-hr measurements.	5
Maximum reference method analytical bias, $D_{\rm q}$.	±5%
Maximum precision, P _R or P _C	≤15%
Maximum difference (D)	±20%
Estimated Method Detection Limit (MDL), μg/m³.	5% of NAAQS level.

[73 FR 67059, Nov. 12, 2008]

Table C-4 to Subpart C of Part 53—Test Specifications for $PM_{10},\,PM_{2.5}$ and $PM_{10-2.5}$ Candidate Equivalent Methods

Specification	PM ₁₀	PM _{2.5}			PM _{10-2.5}		
		Class I	Class II	Class III	Class II	Class III	
Acceptable concentration range (R _i), μg/m ³ .	15–300	3–200	3–200	3–200	3–200	3–200	
Minimum number of test sites.	2	1	2	4	2	4	
Minimum number of can- didate method samplers or analyzers per site.	3	3	31	31	3 1	31	
Number of reference meth- od samplers per site. Minimum number of ac- ceptable sample sets per site for PM ₁₀ methods:	3	3	31	31	31	31	
R _i < 60 μg/m ³	3						
$R_j > 60 \ \mu g/m^3 \$	3						
Total	10						
$R_j < 30 \mu g/m^3$ for 24- hr or $R_j < 20 \mu g/m^3$ for 48-hr samples.		3					